ALI42 G2 features:
- 2 channels
- Operation modes include:
 - Analog input (ALI) mode
 - Bridge voltage-excitation mode:
 - 0-6 V (DC) for >120 Ω full bridges
 - 0-4 V (DC) for 120 Ω full bridges
 - 8-10 V (DC) for 1 kΩ full bridges
- Supports TEDS IEEE 1451.4 V0.9, V1.0 (Class 1 & 2)
- 24-bit resolution
- 819.2 kSa/s sampling rate for 1 channel, 350 kHz bandwidth
- 409.6 kSa/s sampling rate for 2 channels, 175 kHz bandwidth
- <0.05° @ 10 kHz phase accuracy between channels of the same Module type and <0.6° of another Module type
- ±10 V, 1 V, 100 mV input ranges for all modes
- Input resistance: 2 MΩ
- Input capacitance: <100 pF
- DC or AC coupling
- Balanced differential signal input
- Sensors and bridges providing a full bridge are supported
 - Local and Remote Sense options
 - 100 kΩ internal shunt calibration resistor
 - Differential voltage-excitation output and balanced sense input
- Pre and post filter overflow monitoring
- Selectable low and high pass digital filters
- Lemo 7-way EHG.0B connectors

Where used:
- With any voltage source up to ±10 V
- With any pressure transducer, load cell, strain gauge and other bridge based sensors

ALI42B G2 features:
- 2 channels
- Operation modes include:
 - Analog input (ALI) mode, terminated with 50 Ω
 - Analog input (ALI) mode, unterminated
- Operation modes for differential voltage-excitation:
 - Balanced differential voltage-excitation output
- Balanced differential signal input
- Pre and post filter overflow monitoring
- Selectable low and high pass digital filters
- 50 Ω BNC connectors

Where used:
- With any voltage source up to ±10 V
- Signal sources requiring 50 Ω termination
- Signal sources requiring high input resistance

ALI42B G2 features:
- 2 channels
- Operation modes include:
 - Analog input (ALI) mode, terminated with 50 Ω
 - Analog input (ALI) mode, unterminated
- 24-bit resolution
- 819.2 kSa/s sampling rate for 1 channel, 350 kHz bandwidth
- 409.6 kSa/s sampling rate for 2 channels, 175 kHz bandwidth
- <0.05° @ 10 kHz phase accuracy between channels of the same Module type and <0.6° of another Module type
- ±10 V, 1 V, 100 mV input ranges for all modes
- Input resistance: Software switchable between 50 Ω or 2 MΩ
- Input capacitance: <100 pF
- DC or AC coupling
- Balanced differential signal input
- Sensors and bridges providing a full bridge are supported
 - Local and Remote Sense options
 - 100 kΩ internal shunt calibration resistor
 - Differential voltage-excitation output and balanced sense input
- Pre and post filter overflow monitoring
- Selectable low and high pass digital filters
- 50 Ω BNC connectors

Where used:
- With any voltage source up to ±10 V
- Signal sources requiring 50 Ω termination
- Signal sources requiring high input resistance

Personalizing Systems

SubModules
A SubModule is sometimes required to provide a special interface to an individual sensor. SubModules are thus used to personalize a Module as the final interface to a sensor or provide features like cold junction temperature sensing.

MiniTerminal
The MT12 MiniTerminal provides a large, bright LED display as a practical solution to show test information as well as to receive commands from a user such as start or stop. It connects to any one of the System Controller and Power Supply boards found in any Mainframe.

Rack Mounted System Accessories
The RM04, RM06 and RM10 RackMounts are compact, machined aluminum Rack Mounting Kits which house 4, 6 and 10-slot PAK MKII Mainframes in 19 inch racks. The Mainframe has specifically been recessed in each Mounting Kit to ensure that all cables are contained behind the rack’s front face. These cables can then be routed to the left and right sides of the Mainframe. At the rear, a horizontal brace provides a mounting point for cable connector flanges should this be required.

Mobile System Accessories
The SF10 SeatFrame optimally secures a 2, 3, 4 or 6-slot Mainframe and notebook onto a car seat for mobile measurements. It consists of machined aluminum members which can be adjusted to optimally fit the seat. Mainframe and notebook. To prevent sideways movement, the side and rear slides can be adjusted to best hug the seat. The rear SeatFrame handle can also be adjusted to push against the seat’s backrest to prevent it flipping over. It is strapped to the seat using the safety belt. A notebook is placed on an adjustable base mounted above the seat using the safety belt. A notebook is placed on an adjustable base mounted above the seat using the safety belt. A notebook is placed on an adjustable base mounted above the seat using the safety belt. A notebook is placed on an adjustable base mounted above the seat using the safety belt. A notebook is placed on an adjustable base mounted above the seat using the safety belt. A notebook is placed on an adjustable base mounted above the seat using the safety belt. A notebook is placed on an adjustable base mounted above the seat using the safety belt.

Please refer to the Accessories Brochure for more information on these and other SubModules and Accessories.